
Object-Model Transfer in the General Video Game Domain

Alexander Braylan, Risto Miikkulainen
Department of Computer Science, The University of Texas at Austin

Abstract

A transfer learning approach is presented to address the chal-
lenge of training video game agents with limited data. The ap-
proach decomposes games into objects, learns object models,
and transfers models from known games to unfamiliar games
to guide learning. Experiments show that the approach im-
proves prediction accuracy over a comparable control, lead-
ing to more efficient exploration. Training of game agents
is thus accelerated by transferring object models from pre-
viously learned games.

Introduction
Reinforcement learning methods have achieved high levels
of performance across a broad spectrum of games but of-
ten require large amounts of training data (Hausknecht et
al. 2014; Mnih et al. 2015). Learning forward models of
an agent’s environment can reduce the amount of required
training and improve overall performance and flexibility. A
forward model is a function that predicts the future state
of an environment from its current state. However, when
the data used to train a model is sparse, noisy, or high-
dimensional, the model is at risk of suffering from gener-
alization error in predictions made outside of the data seen
during training. For example, the first few frames of a new
game an agent observes may not be sufficient to inform the
agent about how the game will behave later on.

One field of research that may help address the problem
of generalization error is transfer learning (Taylor and Stone
2009; Pan and Yang 2010), the reuse of knowledge and skills
learned in source tasks to accelerate and improve perfor-
mance in a different target task. Applied to video games,
the idea is that an agent with ample experience playing vari-
ous source games can learn a better model of a new target
game by transferring and combining knowledge from the
source games. This paper considers the role of this combined
transferred knowledge in forming an inductive bias — an as-
sumption that constrains the space of possible models, and a
way to guard against generalization error (Mitchell 1980).

The first challenge in transfer learning is mapping be-
tween variables in the source and target environments. A
second challenge is integrating and applying the transferred

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge. This paper responds to both questions in the
context of general video game playing. The key step taken
toward the first challenge is to decompose game environ-
ments into collections of objects. In an object-oriented for-
mulation of a game environment, objects belong to object
classes exhibiting similar behaviors across a wide variety of
games (Diuk, Cohen, and Littman 2008). The variables of
an object class are interpreted in the same way regardless
of the game, simplifying the question of variable mapping.
The approach of this paper toward the second challenge is to
construct transfer ensembles out of models transferred from
source games and scratch models newly trained for the tar-
get game. Each transfer ensemble uses a weighted average
of predictions from its constituent models to predict the be-
havior of a target object. The weights are calculated based
on how well each constituent model describes the data ob-
served for the target object class. An important final step is
retraining the source models to better fit target data.

Experimental results show that agents using transfer en-
sembles as models of object classes generalize better than
using scratch models. After observing small quantities of
in-sample training data, transfer ensembles achieve greater
accuracy than scratch models when predicting the behavior
of objects in subsequent out-of-sample test data. Agents that
use learned models to inform their actions in an exploration
task are shown to perform better when using the transfer
learning approach than when learning from scratch.

Altogether, the conclusion is that decomposing environ-
ments into objects and transferring object models across
games is a promising approach for learning to play video
games from small amounts of experience.

Background
This paper draws from research in general video game play-
ing, model-based reinforcement learning, and transfer learn-
ing. Each is a broad field of research, so this section will
review the topics most relevant to this work.

General Video Game AI
General Video Game AI (GVG-AI) is an open-source
project that facilitates artificial intelligence research in gen-
eral video game playing (Schaul 2013; Perez-Liebana et al.
2016). The GVG-AI project provides a framework for agents
to interact with games and includes 60 games hand-coded in

To Appear In Proceedings of the Twelfth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment 2016.

the Video Game Description Language (Ebner et al. 2013).
The games are similar to games from the Atari 2600 console
and other popular video games, including games inspired
by Space Invaders, Frogger, Zelda, Lemmings, Seaquest,
Sokoban, Dig Dug, Pacman, Star Fox, Plants vs. Zombies,
among many others. Borrowing from several genres of video
games presents agents with a wide diversity of challenges.

Additionally, there are a few advantages to using GVG-AI
over an Atari emulator. GVG-AI objects can exhibit stochas-
tic behavior. For Atari, stochasticity can so far only be added
artificially to the initial game state or to the actions input
by the player (Hausknecht and Stone 2015). Furthermore,
each game in GVG-AI includes several levels with different
initial conditions. These features allow for straightforward
out-of-sample testing, crucial for measuring generalization
error. Therefore, the experiments in this paper use the GVG-
AI framework and games.

Model-Based Reinforcement Learning
Reinforcement learning problems challenge agents to take
actions in response to observations of an environment in
order to accumulate rewards over time (Sutton and Barto
1998). In the most common case, the environment is for-
mally a Markov decision process (MDP), which consists of a
set of states, actions, and a probabilistic transition function.
This function governs the distribution of subsequent states
given every current state and action. Model-based reinforce-
ment learning methods rely on an estimate of the transi-
tion function. In contrast to model-free methods, they have
rich representations of the environmental dynamics. Such
representations yield various benefits: data efficiency, better
planning and exploration, and robustness against changes in
the reward function (Atkeson and Santamaria 1997; Asmuth
and Littman 2011). Most approaches to model learning for
high-dimensional environments use factored state represen-
tations, learning approximate transition functions on a man-
ageable number of features of the state space.

Factored-State Model Learning for Video Games Be-
cause video games are high-dimensional environments, the
only approaches that learn models of video games use fac-
tored state representations. One approach to learning models
of Atari games by Bellemare et al. (Bellemare, Veness, and
Bowling 2013) predicts patches of pixels from neighboring
patches using a compression algorithm, taking advantage of
the tendency of game objects to depend only on nearby ob-
jects. Alternatively, a deep learning approach by Oh et al.
(Oh et al. 2015) uses convolutional neural networks on pixel
inputs from the entire game screen to predict future pixel
values.

While some research exists on learning factored models to
make the most out of few training samples (Degris, Sigaud,
and Wuillemin 2006; Hester and Stone 2013; Jong and Stone
2007), both papers on model learning for video games focus
on the scalability and power of the models rather than on
sample efficiency. The neural networks used by Oh et al.
trained on 500,000 frames per game, while the models in
Bellemare et al. trained on 10 million frames. This paper
investigates training on as few as 10 frames.

Object-Oriented Markov Decision Process An Object-
Oriented Markov Decision Process (OO-MDP) is a factor-
ization that exploits the object-oriented nature of many re-
inforcement learning problems by re-framing the environ-
ment as a collection of objects (Diuk, Cohen, and Littman
2008). Compared to the high dimensionality of the full game
state, the object-oriented environment is represented only
by the relatively few attributes of each object. These at-
tributes include the object’s internal state variables and vari-
ables representing relations with other objects. For example,
geographic relationships are encoded by first-order proposi-
tions on(o1, o2), touchN (o1, o2), touch

E(o1, o2), etc. Each
object belongs to an object class; all instances of the same
object class are assumed to follow the same transition func-
tion, thus only one model is needed for each object class.
The assumption that many of these object classes are simi-
lar over multiple games is one motivation for choosing the
object-oriented factorization for transfer learning.

Transfer Learning
The transfer of models between tasks is related to the the-
ory behind choosing a good inductive bias. When a learner
can sample from multiple related tasks, an inductive bias
that works well for several of those tasks can be expected
to work well in other related tasks (Baxter 2000). For ex-
ample, learning multiple related tasks at the same time with
some shared learning parameters can be better than learn-
ing each task individually (Caruana 1997). Similarly, source
knowledge can inform the selection of inductive bias in tar-
get tasks. Some such approaches involve the use of an en-
semble model, a weighted combination of source models
where the weights depend on how well each source model
predicts the target data (Dai et al. 2007; Gao et al. 2008;
Eaton and DesJardins 2009). This is the type of approach
taken in this paper.

Approach
This section first presents a method for learning a forward
model of the transition function of each object class from
scratch in GVG-AI games. It then presents a transfer learn-
ing method for reusing scratch models to learn models more
quickly for new objects in target games.

Learning Object Models from Scratch
A forward model Fj of an object class j is a function that
generates a prediction Ŝi

t = Fj(S
i
t−1) for the state Si

t of ob-
ject instance i (belonging to object class j), given its previ-
ous state Si

t−1. The state Si
t−1 includes the object instance’s

internal variables as well as global state variables such as
the player action At−1. Learning a model involves using ob-
served data to alter the parameters of the model so as to
improve its prediction accuracy. The three major decisions
for specifying a model learner are on the model variables,
the model’s functional form, and the learning algorithm, de-
scribed in detail in the rest of this subsection.

Model Variables: Object Class Attributes In addition to
a visual display, GVG-AI reports a list of all objects in the

Figure 1: Simplified depiction of scratch and transfer ap-
proaches. The top row shows sequential game transitions
containing object instance a1 of the dark creature class and
b1 and b2 of the light creature class. The middle row shows
data from each class being used to train their respective
scratch models, m1 and m2. In the bottom row, observa-
tions of object instance c1 of the bumblebee class are used
to train a transfer model m3 by adopting model m2 from the
most similar class (the light creature) and retraining it. The
scratch models serve both as stand-alone models to predict
transitions and as building blocks for transfer models.

game at each frame. For each of these objects, it discloses
the occupied tile – or x and y position – as well as a token
representing the object’s class used for grouping different
instances of the same class within a game.

The above position and object class information are suffi-
cient to extract a set of attributes that capture most of the ob-
servable object behaviors in GVG-AI games. The most com-
mon behaviors encountered include deterministic, stochas-
tic, and player-controlled movement; death; and spawning
of other objects on the same tile. Spawning is a novel exten-
sion of the OO-MDP formulation to capture the effect of a
new object instance appearing in a game.

The predicted next state of an object instance g consists
of the following output attributes:

• Directional movement (North/South/East/West) at time t,
Mt = {mN

t ,m
S
t ,m

E
t ,m

W
t };

• Whether the object is alive and on screen, et; and

• New spawns of other objects on the tile of this object,
Nt = {nC(i)

t : spawnt(i), ont(g, i)}.
To clarify how the spawn attributes are managed, the propo-
sition spawnt(i) denotes whether an object i is a spawn – a
newly observed object instance in a game – at time t. Every
spawn observation is recorded as nC(i)

t = 1 for every other
object on the same tile as the spawn, with C(i) denoting the
object class of object i. For example, when a new bomb ob-
ject appears on the same tile as an alien object, that alien
object takes a value of 1 for the attribute nbomb.

In addition to the above output attributes, the following
input attributes account for factors upon which the predicted
behaviors are conditioned:

• Directional movement at time t− 1, Mt−1 =
{mN

t−1,m
S
t−1,m

E
t−1,m

W
t−1};

• Other objects touching the object Ht−1 =

{hD,C(i)
t−1 : touchD

t−1(g, i)}, D ∈ {N,S,E,W,ON};
• Whether the object was facing in the direction of its last

movement, ft−1; and
• Action input by the player, At−1 =
{aNIL

t−1, a
UP
t−1, a

DOWN
t−1 , aLEFT

t−1 , a
RIGHT
t−1 , aSHOOT

t−1 }.
For example, whenever an object instance is adjacent or
overlapping another object instance of a different class, its
h attribute corresponding to the other object’s class and rel-
ative position takes a value of 1.

In addition to object class models, termination models can
be learned for predicting whether the game is won or lost at
each frame from some global game variables. Termination
models are not deeply explored in this paper but are helpful
for experiments involving action selection. The two termina-
tion models, P (WIN|X) and P (LOSE|X), are conditioned
on the following inputs:
• Existence of at least one live object instance of each class

in the game, Xt−1 = {xjt−1 : existst−1(j)}.
Each xj represents whether any instance of the game’s

object class j exists at all at the given time. This input is
used because termination often coincides with the total dis-
appearance of one of the game’s object classes.

Functional Form and Learning Algorithm In a factored
state model, the prediction Ŝt of the next state of an ob-
ject is decomposed into predictions for each output variable
ŝkt ∈ Ŝt. All of the specified object variables take values
of either 0 or 1. The values of variables not observed by an
object are 0 by default. The factored-state model produces
a prediction between 0 and 1 for each output variable of an
object instance. Each prediction represents the probability
of the output variable taking a value of 1 given the observed
input values. A logistic regression model is trained for each
output variable of each object class using observations of all
instances of the object class in a game, depicted in the first
two thirds of Figure 1.

A logistic regression output is a sigmoidal function of its
weighted inputs, taking the form ŝkt ∼ 1

1+e−WSt−1
. The

weight vector W consists of coefficients to the input vari-
ables and an intercept term which are trained through gra-
dient descent. The gradient descent algorithm iteratively de-
creases a cost computed from the values of observed St and
predicted Ŝt. Weights are gradually changed in the direc-
tion of the partial derivative of this cost with respect to the
weights so as to reduce the cost. The cross entropy error
Et = −

∑
k (s

k
t ln ŝ

k
t + (1− skt) ln (1− ŝkt)) is used as the

cost function to ensure convergence near a global minimum.
During gradient descent training, data points are presented in
random order at each iteration to avoid biasing the learned
model.

Object Model Transfer
The transfer learning approach in this paper relies on a sim-
ple and intuitive assumption: Some object classes encoun-

tered in a target should behave similarly to other object
classes previously encountered in sources. Therefore, when
reasoning about an unknown target object, knowledge of
previously seen similar source objects can help constrain
and shape the distribution of predictions for the target ob-
ject’s behavior. The measure of similarity depends on what
is known about the target object, what is known about the
source objects, and the ability to establish relationships be-
tween attributes of the different objects. This assumption
forms an inductive bias which should help trained models
generalize better to unseen target data.

The bottom third of Figure 1 is a sketch of how this ap-
proach uses source models to train transfer models. The fol-
lowing example serves to illustrate more tangibly how object
class models can be transferred.

An Illustrative Example of Walls and Avatars In the
game Chase, the player-controlled avatar must chase goats
by moving freely in four directions except when blocked by
wall objects. These movement rules for the avatar are com-
mon in several other games, such as the game Escape. In
Escape, the avatar is again moved in four directions by the
player and is blocked by walls. The Escape avatar can also
push away box objects and disappear through hole objects.
A transfer-learning agent who has played many games of
Chase but has only seen a few frames of Escape should be
able to reuse specific knowledge from Chase to make more
accurate predictions about Escape than a total novice.

Upon encountering a wall for the first time in Escape,
a novice agent with no Chase experience would have low
certainty on the outcome of an attempt to move the avatar
into the wall. In contrast, a transfer learning agent could no-
tice some similar behavior between the Chase and Escape
avatars — such as how the player inputs move both of them
in similar directions — and reason that the interaction with
the wall is also likely to be the same in both games.

The transfer learning method presented in this paper pro-
duces models that make predictions as described above
when the source is Chase and the target is Escape. How-
ever, transferring object class models is not always so sim-
ple for all sources and targets. The following subsections
explain additional challenges encountered and how they are
addressed.

Source Knowledge Selection One objective for a trans-
fer learning algorithm is an ability to choose automatically
what knowledge to transfer from a potentially large pool of
source models. Transferred knowledge may harm rather than
improve performance in the target task, an outcome called
negative transfer (Taylor and Stone 2009). In order to re-
duce negative transfer, the transfer learning algorithm may
select its sources according to their expected contribution to
performance.

This paper uses a measure of one-frame forward predic-
tion accuracy to evaluate learned models, both for guid-
ing source selection and for overall evaluation. Prediction
accuracy of an object class model F on object transition
data S = {S1, S2, ...ST } is calculated as accuracy(F,S) =
1
T

∑T
t=2 equal(St, F (St−1)), where equal(S, Ŝ) = 1 if for

all output attributes k, sk = round(ŝk), and 0 otherwise.

This measure can also serve to evaluate the goodness of
fit of a source model F SRC to target data STRG, referred
to in this paper simply as the fitness of SRC to TRG, =
accuracy(F SRC,STRG). These accuracy measures range from
0 to 1, with higher values denoting better models.

The fitness measure serves to estimate which source mod-
els are likely to transfer well to target object classes. A
source selection algorithm might additionally use other mea-
sures such as the visual similarity of the icon used to repre-
sent the object or the frequency at which the object class
model successfully transfers to other object classes. Such
additional measures could further improve performance on
source selection but are left to future research.

Target Model as Ensemble of Source Models The al-
gorithm for transferring object class models is described
in detail in this subsection. The algorithm starts with sev-
eral trained object class models from source games. Then
it observes some frames in a new target game. Some of the
source models should predict later observations of the tar-
get game objects more accurately than new models trained
from scratch on the observations made so far. Specifically,
the assumption is that source models with high fitness to the
target data should be more useful than those with low fit-
ness. Therefore, for each object class in the target game, the
algorithm builds a transfer ensemble out of both the pool of
source models and the new scratch target model. The basic
ensemble used is a forward model that makes predictions
based on the weighted sum of its constituent forward mod-
els’ predictions. Each of its constituents is assigned a weight
as follows:

1. The scratch target model gets a nominal weight of 1.

2. Each source model j gets a nominal weight equal to
(bj −a/2), where bj is the source model’s fitness and a is
the scratch accuracy. Subtracting a portion of the scratch
accuracy increases the relative strength of weights given
to fitter source models.

3. Source models with non-positive weights are dropped.

4. The final weights are normalized by the sum.

5. The source models are retrained by adjusting their inter-
nal coefficients through the same gradient descent method
used for their initial training, minimizing prediction error
on the new target data while leaving intact the parts of the
source models uninformed by target data.

The transfer ensemble is expected to predict target objects
in out-of-sample data better than the scratch target model
alone because of the inductive bias — the ensemble is bi-
ased toward models that work in other games. Retraining
improves the accuracy of the transfer ensembles and reduces
the number of cases and severity of negative transfer.

Experiments and Results
Out of the 60 GVG-AI games, 30 were used for exploratory
testing and tuning of the system, while the other 30 were
withheld for experiments. The reason for this division was to
prevent bias from corrupting the results of the experiments.

The first experiments test the generalization ability
of transfer ensembles compared to models learned from
scratch. The hypothesis is that, after observing a small
amount of in-sample training data from target games, trans-
fer ensembles achieve higher accuracy on out-of-sample tar-
get data than scratch models. Initially, source models are
learned from scratch using 500 frames of each source game.
Then, for each of the 30 target games, scratch and transfer
models are trained on 10 frames of target data. Each transfer
model is an ensemble composed of object models from one
of three disjoint sets of six randomly selected source games.
The target game is never in the set of source games used
for transfer. The ensemble is built according to the method
described in the section above, using target training data
both to calculate each source model’s fitness score and to
retrain the models. After the 10 frames of training, 100 out-
of-sample testing frames are produced from a different level
of the target game, and accuracy is measured for each object
class model produced by the scratch and transfer methods.
All player actions are selected randomly.

The main measure of success is the outperformance in
forward prediction accuracy of transfer models over scratch
models in the testing frames for each object class in each
target game. To reject the null hypothesis of the differences
being due to chance, a t-statistic is used to compute a one-
sided p-value. A total of 500 object class models from 30
games are tested.

Bait Avatar ->

Aliens Portal ->

Figure 2: Test accuracy for scratch models versus transfer
models. Points represent object classes, which come from
all of the target games. Points appearing on the line or in
the top-left half of the plot indicate transfer does as well or
better than scratch. Transfer outperforms scratch for many
object classes, such as the avatar in Bait and the portal in
Aliens, and never significantly reduces accuracy.

Table 1 shows that the average increase in accuracy is sta-
tistically significant, and it can be concluded that the transfer
ensemble approach for learning models of object classes is
sound. Figure 2 displays how the transfer ensemble models
compare in out-of-sample accuracy against models trained
from scratch. Each dot represents one object class model;
scratch and transfer perform equally when a dot falls on the
line, transfer outperforms when a dot is in the upper-left,
and scratch outperforms when a dot is in the lower-right.

Table 1: Mean accuracy µ of scratch (s) and transfer (t) mod-
els for each experimental setup with training frames T and
source set S. Also reported are the mean accuracy µa for
models of the avatar – usually the most important object –
and t-statistics for differences in object class model accu-
racy between transfer and scratch. Improvement in accuracy
from using transfer is statistically significant.

T S µs µt µa
s µa

t t p
10 1 0.90 0.92 0.74 0.80 3.53 <1%
10 2 0.92 0.94 0.75 0.82 3.46 <1%
10 3 0.91 0.92 0.78 0.85 3.70 <1%

These graphs show that improvement is consistent across
many games with rare occurrences of negative transfer.

As shown in Table 1, the average difference between
scratch and transfer performance is only about two per-
cent. However, this average difference understates the sig-
nificance of the improvement. Many object classes are easy
enough to model that scratch achieves perfect accuracy. For
example, wall objects never move and are modeled with per-
fect accuracy by scratch in all the tested target games. More
important is the improvement in object classes that are hard
to model, such as the avatar, which behaves with varying
complexity depending on the game. Transfer achieves higher
accuracy of about seven percent for the avatar models. Fur-
thermore, Table 1 shows that the improvement is consis-
tent using all three sets of source games. Overall, these re-
sults strongly support the hypothesis that the transfer method
of this paper leads to improved out-of-sample accuracy for
many object classes, with very little negative transfer.

The final experiments test how well scratch and trans-
fer models perform relative to each other and relative to a
random action-taking agent on the task of exploring the en-
vironment. Agents perform this task on three levels of the
game Labyrinth, in which the agent must guide the avatar
to reach a destination through maze-like levels containing a
few spike tiles fatal to the avatar.

First, agents are given either 10, 50, or 100 frames of
training before being evaluated on a fresh 500 frames. If
the avatar dies or reaches the goal at any time, the game is
restarted with the avatar in its original position. In all setups,
the transfer agent is built using an ensemble of six random
source games other than Labyrinth, with 500 frames of train-
ing for each source, and retrained on the 10/50/100 frames
of target data. Termination models are trained in addition to
object class models for both scratch and transfer in source
and target games in order to help predict death.

After training, agents go through a testing phase of an-
other 500 frames. During this phase, agents use their for-
ward models to choose one-step actions most likely to take
them to novel or least-recently visited states. Their decision-
making works as follows. The agent remembers each unique
game state it visits and the time frame at which it was last
visited. For each action the agent predicts the next game
state by using its object class models to predict the next state
of each game object. Model outputs are treated as proba-
bilities of setting the corresponding object variables to one.

Treating forward predictions as probabilistic samples in this
way helps agents avoid getting stuck. The value of each ac-
tion considered at each frame by an agent is calculated as
1− tŜ

tA
, where tA is the current time frame of the game and

tŜ is the last visited time frame of the predicted next state
(tŜ = 0 if the state has never been visited). If the agent pre-
dicts death the value is -1. At each frame the agent chooses
whichever action has the maximum value. At the end of the
testing phase, the total number of unique states visited are
counted and used as the metric of evaluation. After the test-
ing phase, an additional 500-frame phase is run to measure
prediction accuracy as in the previous experiments. During
this phase, all agents take random actions rather than in-
formed ones, in order to ensure fair comparison. The pur-
pose is to determine the relationship between model accu-
racy and actual performance on an important task requiring
action selection. Results are averaged over five experiments
on each of the three levels of Labyrinth and each of the three
training setups.

Table 2: Average improvement in accuracy (Acc) and explo-
ration (Exp) over random actions, by level and training size
(N), for the scratch (S) and transfer (T) approaches. Trans-
fer outperforms scratch in exploration even when they are
tied for accuracy, as in the results of the 100-frame train-
ing scenarios. The conclusion is that transfer leads to better
accuracy and exploration performance.

Map N AccS AccT ExpS−R ExpT−R

L0 10 0.71 0.86 -3.2 45.8
L1 10 0.77 0.84 4.4 24.4
L2 10 0.69 0.92 2.4 12.6
L0 50 0.84 0.93 12.4 27.8
L1 50 0.89 0.91 -3.6 32.8
L2 50 0.88 0.94 3.4 13.4
L0 100 0.95 0.86 41.8 39.2
L1 100 0.91 0.9 12.2 26.6
L2 100 0.93 0.95 10.6 25.6

(a) Random agent (b) Scratch agent (c) Transfer agent

Figure 3: Trajectory maps of avatar during test phase, five
runs overlaid for Level 0, agents trained on 10 frames. The
maps show more space explored by transfer agents.

Table 2 shows how scratch and transfer agents perform
in exploring three levels of Labyrinth given 10, 50, and 100
initial frames of training. Figure 3 shows an example of the
avatars’ trajectories. The agents trained from scratch on only
ten frames of the game are not highly accurate in out-of-
sample experience and struggle to perform better than ran-
dom exploration. In contrast, the transfer agents are more

accurate, supporting the results of the previous experiments,
and are also able to explore much more efficiently.

As the number of training frames increases to 100, scratch
models catch up in accuracy to transfer models. Interest-
ingly, the transfer agents still explore more efficiently on av-
erage than the scratch agents, despite not being any more ac-
curate. One possible explanation for the outperformance un-
explained by accuracy is that the transfer agent may be par-
ticularly more accurate in the more important predictions.
For example, if the avatar dies from contact from a spike tile,
the agent must restart from the original position. The trans-
fer agent may more accurately predict this deadly interaction
than a scratch agent when no spike traps appear during train-
ing because the transfer agent is composed of some source
models that predict death from contact with foreign objects.
Being able to avoid death allows the transfer agent to keep
exploring while the scratch agent has to start over. This ad-
vantage from using transfer is underestimated by the aver-
age accuracy measure, which is diluted by other predicted
behaviors.

Discussion and Future Work
The methods explored in this paper - object-oriented fac-
torization, transfer ensembles, and model retraining - help
improve the sample efficiency of agents learning GVG-AI
games. In these experiments, transfer-learning agents were
more accurate than scratch agents when predicting future
states. They were also more efficient at exploration, which is
a widely useful ability for learning games. Future work will
investigate the ultimate task of maximizing score, which is
outside the scope of this paper because it requires the inte-
gration of planning and value approximation methods.

GVG-AI games contain diverse challenges that test how
well the learning approach generalizes across games. Cru-
cially, its games also have stochastic behaviors and multi-
ple levels, which test how well agents generalize across ex-
periences. However, there are some challenges that are not
covered by the GVG-AI domain, and an important path for
future work is to improve the robustness of this approach by
adapting it to other domains. For example, using transfer to
reduce generalization error could be useful in domains with
noisy or high-dimensional observation spaces.

Conclusion
This paper demonstrated a model-based transfer learning
approach for training video game agents from very little
data. The approach constructs an ensemble out of source ob-
ject models and uses the limited target data both to choose
the ensemble weights and to retrain the final model. Al-
though both scratch and transfer models achieve global min-
ima in prediction errors during training, experiments showed
consistently higher out-of-sample performance for trans-
fer models across diverse GVG-AI games. Transfer agents
showed particular improvement in modeling important ob-
jects such as avatars, which was useful for more quickly
exploring unfamiliar game maps. Artificial agents can use
this approach to accelerate early-stage learning and quickly
adapt to novel situations.

References
Asmuth, J., and Littman, M. L. 2011. Learning is planning:
Near bayes-optimal reinforcement learning via monte-carlo
tree search. In Proc. of the Conference on Uncertainty in
Artificial Intelligence.
Atkeson, C. G., and Santamaria, J. C. 1997. A comparison
of direct and model-based reinforcement learning. In Inter-
national Conference on Robotics and Automation. Citeseer.
Baxter, J. 2000. A model of inductive bias learning. J. Artif.
Intell. Res.(JAIR) 12:149–198.
Bellemare, M.; Veness, J.; and Bowling, M. 2013. Bayesian
learning of recursively factored environments. In Pro-
ceedings of the 30th International Conference on Machine
Learning (ICML-13), 1211–1219.
Caruana, R. 1997. Multitask learning. Machine learning
28(1):41–75.
Dai, W.; Yang, Q.; Xue, G.-R.; and Yu, Y. 2007. Boosting for
transfer learning. In Proceedings of the 24th international
conference on Machine learning, 193–200. ACM.
Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006. Learn-
ing the structure of factored markov decision processes in
reinforcement learning problems. In Proceedings of the
23rd international conference on Machine learning, 257–
264. ACM.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the 25th international conference on Ma-
chine learning, 240–247. ACM.
Eaton, E., and DesJardins, M. 2009. Set-based boosting for
instance-level transfer. In Data Mining Workshops, 2009.
ICDMW’09. IEEE International Conference on, 422–428.
IEEE.
Ebner, M.; Levine, J.; Lucas, S. M.; Schaul, T.; Thompson,
T.; and Togelius, J. 2013. Towards a video game description
language.
Gao, J.; Fan, W.; Jiang, J.; and Han, J. 2008. Knowledge
transfer via multiple model local structure mapping. In Pro-
ceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, 283–291. ACM.
Hausknecht, M., and Stone, P. 2015. The impact of deter-
minism on learning atari 2600 games. In Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence.
Hausknecht, M.; Lehman, J.; Miikkulainen, R.; and Stone,
P. 2014. A neuroevolution approach to general atari game
playing. Computational Intelligence and AI in Games, IEEE
Transactions on 6(4):355–366.
Hester, T., and Stone, P. 2013. Texplore: real-time sample-
efficient reinforcement learning for robots. Machine learn-
ing 90(3):385–429.
Jong, N. K., and Stone, P. 2007. Model-based function ap-
proximation in reinforcement learning. In Proceedings of
the 6th international joint conference on Autonomous agents
and multiagent systems, 95. ACM.
Mitchell, T. M. 1980. The need for biases in learning gen-
eralizations. Department of Computer Science, Laboratory
for Computer Science Research, Rutgers Univ.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Oh, J.; Guo, X.; Lee, H.; Lewis, R. L.; and Singh, S. 2015.
Action-conditional video prediction using deep networks in
atari games. In Advances in Neural Information Processing
Systems, 2845–2853.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. Knowledge and Data Engineering, IEEE Transactions
on 22(10):1345–1359.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Lucas,
S. M.; and Schaul, T. 2016. General video game ai: Compe-
tition, challenges and opportunities. In Thirtieth AAAI Con-
ference on Artificial Intelligence.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Computational In-
telligence in Games (CIG), 2013 IEEE Conference on, 1–8.
IEEE.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Taylor, M. E., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. The Journal of
Machine Learning Research 10:1633–1685.

